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We investigate the classical and quantum dynamics of the open quartic oscillator model. Typically quantum
behavior such as collapses and revivals �also squeezing� are induced by the nonlinearity of the model. We show
that purely diffusive environments, as expected, attenuate such phenomena. We obtain analytical results in both
regimes classical and quantum and discuss the effect of a diffusive reservoir in the two cases. We show that
“separation times” as usually defined in the literature are strongly observable �and initial condition� dependent,
rendering a solid definition of a unique classical limit rather difficult. In particular, the separation time for the
variance ��x̂� can be smaller than that for the expectation value of the position �x̂� of the centroid of the wave
packet. We find a hierarchy of time scales which depends on the observable and the reservoir.
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I. INTRODUCTION

The transition from quantum to classical dynamics consti-
tutes an unsolved problem which has raised permanent inter-
est since the foundation of quantum mechanics. Although
much attention has been paid to quantum systems with clas-
sically chaotic counterparts �1–10�, nonlinearities present in
integrable systems can be a major source of discrepancies
between quantum and classical dynamical behaviors. Cur-
rently, these discrepancies are believed to disappear if the
quantum system is subjected to the action of an environment.
A famous example where environmental effects were found
to destroy typical quantum dynamical characters is the ex-
periment performed in Paris �11�, where a coherent superpo-
sition of states �Schrödinger cat state� of a cavity field was
observed gradually to evolve into a statistical mixture due to
the interaction between the electromagnetic mode and the
cavity walls. Also, interference patterns in multislit experi-
ments involving fullerene molecules have been shown to be
strongly affected by air molecules or by thermal emission of
radiation �12�.

The characterization of the quantum-classical transition is
also a matter of debate: discussions of the classical limit are
often based on Ehrenfest’s theorem, which states that, under
certain conditions, the centroid of a quantum wave packet
will follow a classical trajectory up to what is called a “quan-
tum break time” �1,13–19�. As discussed in Ref. �20�, the
conditions for the applicability of Ehrenfest’s theorem are
neither necessary nor sufficient to define the classical regime.
In addition to that, it has been found that it is impossible to
characterize quantum dynamics through a unique time scale
such as the Ehrenfest time �21�. As we will show in the
present contribution, if one considers the variance of the
wave packet, we observe that the deviation between classical

and quantum predictions occurs before the corresponding de-
viation for the centroid �“Ehrenfest time”�. Although strictly
speaking, Ehrenfest’s theorem is only valid for classical tra-
jectories, it has been argued that a more “fair” comparison
between quantum and classical physics is given by the
difference between the probability distributions of a quantum
state and a classical ensemble constructed in such a way as to
have the same initial marginal �position and momentum�
distributions.

Of course, an important question in this context is in
which sense the system becomes “classical,” given the fun-
damentally different aspects of quantum and classical kine-
matics. The most sensible definition of a classical limit
should be related to experimental precision �10�. We show
that the typical quantum effect �revival� does not strictly van-
ish when the coupling to the reservoir is included. It is only
the amplitude of the revivals that can become orders of mag-
nitude smaller, in a way that it can never be measured for
lack of experimental precision. Does that mean that the clas-
sical limit has been achieved? No, it simply means that, at
that level of precision, quantum effects become unaccessible
to any known measurement process. The same argument can
be also used when one defines a classical limit in the present
model as the limit in which the intensity of the coherent
states considered is large compared with the unity. In this
case, even without a reservoir, the revival will occur at later
and later times �22�. It does not mean, however, that the
reservoir is not necessary to achieve the classical limit, since
the Wigner function can be completely different from the
corresponding classical distribution function, even for short
times, as it has been shown in Ref. �21�. Since quantum
signatures in a state can develop at short times, it is possible,
in principle, to measure them.

The present contribution aims at shedding some light on
the quantum-classical transition in the quartic oscillator sub-
jected to the action of a purely diffusive environment. In this
model, the parameters of interest are chosen in such way that
the nonlinearity constant is smaller than the natural fre-
quency of the oscillator and both are greater than the effec-
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tive diffusion constant. With this choice, the essentially
quantum phenomenon �as reflected by the expectation value
of the position operator� possesses a very different time scale
clearly separated from the harmonic oscillator one. By virtue
of the relative simplicity of the model, fully analytical results
can be obtained allowing for a clear characterization of the
quantum-classical transition and the sense in which quantum
mechanics becomes classical. In the present contribution we
consider four versions of the quartic model: quantum, quan-
tum diffusive, classical, and classical diffusive. Analytical
expressions are obtained for the states as a function of time
as well as for the expectation value of the position operator
and its variance. We show the existence of a quantum effect
in a “pre-Ehrenfest” time scale connected to the variance
time scale. Again the effect of the reservoir is to attenuate the
difference.

II. THE MODEL

A. The quantum model with diffusion

The time evolution of the purely diffusive quantum quar-
tic oscillator is given by the usual Lindblad master equation
widely used in quantum optics �23� in the limit of zero dis-
sipation constant k and infinite average number of thermal
photons n̄, such as the product kn̄=� is considered constant.
In this limit, the master equation is given by

�̂�t� =
1

i�
��̂,Ĥ0� + 2��â†�̂�t�â + â�̂�t�â† − â†â�̂�t� − �̂�t�ââ†� ,

�1�

where the density operator �̂�t� represents the state of the
system, â and â† are creation and annihilation operators of

the harmonic oscillator and � is the effective diffusion con-

stant. Ĥ0 is the Hamiltonian of the free quartic oscillator
given by

Ĥ0 = � �â†â + ��2�â†�2â2. �2�

Here, � is the natural frequency of the oscillator and ��
gives the strength of the nonlinearity. This model has been
widely used by many authors �15,18,21–29� for several pur-
poses.

The limit of applicability of this equation is the following
���� ��. To guarantee the validity of Eq. �1� in all
numerical examples, we have chosen � such that
��â†â���� ��â†�2â2�. If we start with a general initial den-
sity operator such as �̂�0�=�m,n�mn �m��n�, where �m� is a
Fock state, after a tedious calculation, we have

�̂�t� = �
l

�
j

�
m,n

�m+j,n+j

	�m + j� ! �n + j� ! �m + l� ! �n + l�!
m ! n ! l ! j!

� 	m−n
j+l �t�
m−n

m+n+1�t�exp�− i�m − n��� − � � �t�

��m + l��n + l� , �3�

where

	n�t� =
2�sinh��nt�

�ncosh��nt� + �nsinh��nt�
,


n�t� =
�n

�ncosh��nt� + �nsinh��nt�
,

and �n=	�n
2−4�2, �n= i��n+2�.

In order to compare with the classical Liouville evolution,
we evaluate the expectation value of the destruction operator

FIG. 1. Expectation value of position. Plot of the mean value
of position for the quantum �solid line� and classical �dashed
line� versions of the quartic oscillator without diffusion ��=0�.
In the quantum mechanical case, the initial state is the coherent
state ��0���0�, where �0=5. The valid equivalent classical distribu-
tion is the Gaussian one centered at �=5 in the complex phase
space, and variance equal to unity. The quantities in the vertical axis

are adimensional: �X̂�=Re�â� and �X�=Re���. Here, we make
�� /�=0.1.

FIG. 2. Expectation value of position. Plot of the mean value of
position for the quantum �solid line� and classical �dashed line�
versions of the quartic oscillator with diffusion �� / ��� �=0.05�.
The initial conditions and the values of the other parameters are the
same as Fig. 1. The inset graphic shows a “zoom” of the region of
the first revival. Note that the revival is present, though damped.
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FIG. 3. Evolution of the classical probability distribution �� ,�* , t� in the complex phase space for the quartic oscillator without
diffusion ��=0�. �a� shows the contour of the initial Gaussian distribution centered in �=−2+2i. The rest of the plots shows the evolved
distribution at the following instants: �b� t=� / �50�� �, �c� t=� / �20�� �, �d� t=� / �2�� �, �e� t=� / ��� �, and �f� t=2� / ��� �.
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FIG. 4. Evolution of the Husimi function Q�� ,�* , t� in the complex phase space for the quartic oscillator without diffusion ��=0�. �a�
shows the contour of the Husimi function associated to the initial coherent state ��0���0�, where �0=−2+2i. The rest of the plots shows the
Husimi distribution of the evolved state at the following instants: �b� t=� / �50�� �, �c� t=� / �20�� �, �d� t=� / �2�� �, �e� t=� / ��� �, and �f�
t=2� / ��� �. In �d�, the state corresponds to a coherent superposition of the two bumps shown in the plot. In �e�, there is an antirevival, i.e.,
the state is a coherent state with amplitude equal to −�0. In �f�, there is a revival, i.e., the initial state is recovered.
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�â�t�� = �
l

�
j

�
n

�n+j+1,n+j
�n + l + 1� ! 	�n + j + 1� ! �n + j�!

�n + 1� ! n ! l ! j!

�	1
j+l�t�
1

2n+2�t�exp�− i�� − � � �t� .

For an initial coherent state �̂�0�= ������, we have

�â�t�� = �
 
1�t�
1 − 	1�t��2

exp�− ���2
1 − 	1�t� −

1

2�t�
1 − 	1�t��

− i�� − � � �t . �4�

In order to calculate the variance we will need

�â2�t�� = �2
 
2�t�
1 − 	2�t��3

exp�− ���2
1 − 	2�t� −

2

2�t�
1 − 	2�t��

− 2i�� − � � �t . �5�

B. Classical diffusive model

The dynamics of the classical version of the diffusive
quartic oscillator is governed by the master equation

d

dt
 = 2�

�2

��* � �
− �H0,� , �6�

where =�� ,�* , t� represents the classical probability dis-
tribution function in the phase space, and H0= �� ���2
+��2 ���4 is the Hamiltonian of the free system. Here, �· , · �
stands for the Poisson brackets, i.e.,

�f ,g� =
1

i�

 � f

��

�g

��* −
�g

��

� f

��*� .

The adimensional complex variable � is related with the
phase space coordinates q and p by the following expression:

� = q	M�

2�
+ ip	 1

2M��
,

where M is the mass of the oscillator.
For an initial Gaussian state �� ,�* ,0�= �2��−1exp�−��0

−��2�, one can easily verify that the solution of Eq. �6� is

��,�*,t� =
1

2�

1

2�t + 1
exp
−

���t� − ��2

2�t + 1
� , �7�

where ��t� is the solution of the equation

d

dt
� = − i�� + 2� � ���2�� ,

with initial condition ��0�=�0. Thus the expectation value of
� is given by

���t�� = e−i�t	1

2

q + ip

A�t�2 �
where we have used M�=1 and A�t�= i�� t+ �2�t+1�−1. The
expectation value of x2 reads

�x2�t�� =
1

2

q2 + p2 +

1

2�t + 1
+ Re�I�2�� ,

where

I�2 =
q2 − p2

�2�t + 1�3A�t�2exp� q2 + p2

�2�t + 1�2A�t�
−

�q2 + p2�
2�t + 1

 .

At this point some comments are in order: as pointed out
by Ballentine and collaborators �20,30,31�, and mentioned
above, the classical limit of a quantum state is an ensemble

FIG. 5. Variance of position. Plot of the variances of the adi-

mensional positions �X̂� and �X� for the quantum �solid line� and
classical �dashed line� versions of the quartic oscillator without dif-
fusion ��=0�. The initial conditions and the values of the other
parameters are the same as Fig. 1. Note the squeezing in the quan-
tum mechanical case in the instants � / ��� � and 2� / ��� �.

FIG. 6. Variance of position. Plot of the variances of the adi-

mensional positions �X̂� and �X� for the quantum �solid line� and
classical �dashed line� versions of the quartic oscillator with diffu-
sion �� / ��� �=0.05�. The initial conditions and the values of the
other parameters are the same as Fig. 1.
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of classical orbits, not a single classical orbit. This is, in fact,
the classical limit we should get for an open system. The
increasing of the average number of excitations in the quan-
tum regime is given by

�â†â��t�
�â†â��0�

= 1 +
2�t

�â†â��0�
. �8�

Thus it is possible to choose ���â†â��0��−1 negligible in the
classical domain. Otherwise, quantum effects prevail. This
deviation characterizes the mesoscopic regime.

III. RESULTS

We start by showing the expectation value of the adimen-

sional position operator X̂= â+ â† and its classical counterpart
X=�+�* in the limit where no diffusion is included. Both
dynamics start with coherent states. As mentioned in the in-
troduction, the constants of the model are chosen as
���� ��, which is also necessary if one derives the quan-
tum model from first principles. Figure 1 shows the quantum
result and its classical counterpart. Clearly we note the re-
vival phenomenon in the quantum unitary version, absent
from its classical counterpart.

When the environment is included �see Fig. 2� the revival
seems to be absent, in the time scale we use. An instructive
way to understand what happens is by looking at the purity
loss of the quantum system, that can be conveniently mea-
sured by the linear entropy or idempotency defect �32�, de-
fined as

��t� = 1 − tr��̂2�t�� . �9�

The linear entropy is a direct indicative of the influence of
the environment on the dynamics of the oscillator. In the

limit where diffusion is absent, when t=� / �2�� � both clas-
sical and quantum expectation values are close to zero, but
the quantum one results from a nontrivial negative interfer-
ence phenomenon, completely absent from the classical evo-
lution. At this time, the wave function becomes a superposi-
tion of two coherent states �Schrödinger cat state�. Figures 3
and 4 show the Husimi function and its classical analog for
�=0. It is clear that the quantum probability distribution is
very different from the classical one even for short times.

For short times, the rate of increasing of the linear entropy
is given by

�̇�t� = 4� + 8����2�1 − exp�− ���2�1 − cos�2� � t���� .

�10�

At t=� / �2�� � the quantum system is being most dramati-
cally affected by the environment, since the diffusion attenu-
ates quantum effects and the state evolves into statistical
mixture. Moreover, the larger the ���, the smaller � which is
needed to destroy interference patterns generated by nonlin-
earity. This is intuitive, and the dependence of the linear
entropy on a classical parameter has been found in several
different situations �2,33–40�.

Let us next take a closer look at the time where the revival
is expected in the absence of the environment. The inset
graphic in Fig. 2 shows the result. Note that a revival is
clearly to be seen and there quantum mechanics is perfectly
at work. Note also the very small amplitude in the figure
�vertical axis�. The role of the reservoir is to attenuate the
quantum behavior, not to destroy it as has often been pro-
posed in the literature. From this standpoint, the quantum-
classical transition is a matter of measurement precision. It is
achieved for all practical purposes, when quantum and clas-
sical results “coincide” for the observables and initial state in

question. Figure 5 shows the quantum variance ��X̂� without
diffusion and its classical analog. We clearly note a squeez-
ing in the quantum case. For very short times both expecta-

FIG. 7. Expectation value of position. Plot of the mean value of
position for the quantum �solid line� and classical �dashed line�
versions of the quartic oscillator with diffusion �� / ��� �=0.002�. In
the quantum mechanical case, the initial state is the coherent state
��0���0�, where �0=5. The valid equivalent classical distribution is
the gaussian one centered in �=5 in the complex phase space, and
variance equal to unity. The quantities in the vertical axis are adi-

mensional: �X̂�=Re�â� and �X�=Re���. Here, we make �� /�
=0.1.

FIG. 8. Variance of position. Plot of the variances of the adi-

mensional positions �X̂� and �X� for the quantum �solid line� and
classical �dashed line� versions of the quartic oscillator with diffu-
sion �� / ��� �=0.002�. The initial conditions and the values of the
other parameters are the same of Fig. 7.
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tion values coincide. As we include the diffusion, the squeez-
ing effect is also suppressed in the same sense as the revival
in the expectation value �see Fig. 6�. Comparing Figs. 1 and
5, we clearly see that the separation time for the variance is
completely different from corresponding separation time for
the expectation value of the position or the momentum.

As a result of the previous analysis, we conclude that
there is a hierarchy of time scales that includes separation
times for the expectation values and the decoherence charac-
teristic time. In fact, for this model and considering an initial
coherent state, the separation time for the mean value of
position is ��X�=� / ��� �, and the separation time for the vari-
ance is ���X�=� / �2�� �, which is smaller than the first by a
factor of 2. Finally, the shortest of these characteristic times
is the decoherence time scale �dec= �8� ���2�−1, � ���2�1.
The “classical limit” is attained when �dec���x���x�. Of
course, it is possible to choose values of ��� and � in a way
that quantum effects cannot be detected by measuring the
expectation value of position or momentum, but can be de-
tected if a measurement of the variance is performed. In Figs.
7 and 8 we have an example of this situation. While the

revival was suppressed, as shown in Fig. 7, Fig. 8 clearly
exhibits squeezing in the same scale.

In summary, we have investigated time scales for the de-
parture of the expectation values of several quantum observ-
ables and their classical counterpart. A diffusive environment
was introduced and it shown to attenuate all typically quan-
tum effects. Completely analytical expressions for both
quantum and classical cases are explicitly given. From the
present results we conclude that characteristic times for the
deviation of quantum and classical predictions for the expec-
tation value of observables is strongly observable and
initially condition dependent. Also, as discussed previously,
the notion of a classical limit relies strongly on comparison
between expectation values of observables, which reflect
only partially the real states �quantum or classical�. As we
have explicitly shown for the case of the revivals strictly
speaking, quantum mechanics is always present, inspite of
the fact that environmental effects tend to attenuate its typi-
cal behavior to a degree which is incompatible with experi-
mental observation.
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